સમીકરણ $(x+1)^{2}+|x-5|=\frac{27}{4}$નાં વાસ્તવિક બીજોની સંખ્યા ...... છે.
$6$
$0$
$4$
$2$
સમીકરણ $5 + |2^x - 1| = 2^x(2^x - 2)$ ના વાસ્તવિક ઉકેલોની સંખ્યા મેળવો.
જો $\alpha$ અને $\beta$ એ સમીકરણ $5 x^{2}+6 x-2=0$ ના બીજો હોય અને $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ હોય તો
સમીકરણ $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ ના ઉકેલ માટે $a$ ની પૂર્ણાક સંખ્યાઓનો સરવાળો કેટલો થાય?
સમીકરણ $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ ને
જો $a, b, c$ એ ત્રિકોણની ત્રણ બાજુઓ છે. જે $\left(a^2+\right.$ $\left.b^2\right) x^2-2 b(a+c) \cdot x+\left(b^2+c^2\right)=0$ નું સમાધાન કરે છે. જો $x$ ના શક્ય ઉકેલોનો ગણ $(\alpha, \beta)$ છે. તો $12\left(\alpha^2+\beta^2\right)=$............................